Name:	Block:	Date:

Worksheet: Mutations Practice

There are three ways that DNA can be altered when a mutation (change in DNA sequence) occurs.

1. Substitution – one base-pairs is replaced by another:

2. Insertion – one or more base pairs is added to a sequence:

3. Deletion – one or more base pairs is lost from a sequence:

There are five possible results of a mutation.

1. Silent mutation: When a base pair is substituted but the change still codes for the same amino acid in the sequence:

Example: TCT and TCC both code for the amino acid Serine

2. Substitution: When a base pair is substituted and the new codon codes for a different amino acid:

Example: TCT codes for Serine and CCT codes for Proline

3. Premature Stop: When a substitution results in the formation of a STOP codon before all of the codons have been read and translated by the ribosome.

4. Codon Deletion or Insertion: A whole new amino acid is added, or one is missing from the mutant proton:

5. Frame Shift: When a deletion or insertion results in a different base pait being the beginning of the next codon, changing the whole sequence of amino acids

Name: ______ Block: _____ Date: _____

	U	С	Α	G	
U	Phe	Ser	Tyr	Cys	U
	Phe	Ser	Tyr	Cys	С
	Leu	Ser	STOP	STOP	Α
	Leu	Ser	STOP	Trp	G
C	Leu	Pro	His	Arg	U
	Leu	Pro	His	Arg	С
	Leu	Pro	Gln	Arg	Α
	Leu	Pro	Gln	Arg	G
Α	lle	Thr	Asn	Ser	U
	lle	Thr	Asn	Ser	С
	lle	Thr	Lys	Arg	Α
	Met	Thr	Lys	Arg	G
G	Val	Ala	Asp	Gly	U
	Val	Ala	Asp	Gly	С
	Val	Ala	Glu	Gly	Α
	Val	Ala	Glu	Gly	G

1. Below is the base sequence for the normal protein for normal hemoglobin and the base sequence for the sickle cell hemoglobin.

Normal: GGG CTT CTT TTT Sickle: GGG CAT CTT TTT

- a. Transcribe and translate the normal and sickle cell DNA.
- b. Identify this as a point or frameshift mutation. Explain.
- c. If the base sequence read GGG CTT CTT AAA instead, would this result in sickle cell hemoglobin? Explain.

MS. DK S	Б	010gy 021				
Name:					_Block:	Date:
2	2.	There are several typ How are they differe	pes of genetic muta ent? Give an exam	ations. List tw ple of each.	vo. What do th	ey have in common?
	3.	A geneticist found the What do you think i				protein coded by a gene. Why?
2	4.	Name one amino acione codon	id that has more th	an one codon	. Name an am	ino acid that has <u>only</u>
ļ	5.	Look at the followin regroup the letters in still make sense? Wh	n groups of three- w	write out the	new groups of	elete the first H and three. Does the sentence
You ha	ve at	a DNA sequence tha the 85 th base- how ma	at codes for a proteing any amino acids wi	in and is 105 1 ill be correct i	nucleotides lor n this protein?	ng. A frameshift mutation
(6.	Given the following	three mRNA seque	ences, 2 code	for the same p	rotein. Which two?
		#1. AGU	UUA GCA ACG A	AGA UCA		
		#2 UCG	CUA GCG ACC A	GU UCA		
		#3 AGC	CUC GCC ACU C	GU AGU		

Ms. DR's Biology 621

Name:	Block:	Date:
Original DNA Sequence: TACACCTTGGC	GACGACT	
mRNA Sequence:		
Amino Acid Sequence:		
Mutated DNA Sequence #1: T A C A T C T T G G (CACGACT	
What's the mRNA sequence? (Circle the change)		
What will be the amino acid sequence?		
Will there likely be effects?		
What kind of inutation is this?		
Mutated DNA Sequence #2: T A C G A C C T T G C	G C G A C G A C T	1
What's the mRNA sequence? (Circle the change)		
What will be the amino acid sequence?		
Will there likely be effects?		
What kind of mutation is this?		
Mutated DNA Sequence #3: T A C A C C T T A G ($\frac{1}{2}$ C A C C A C T	
What's the mRNA sequence? (Circle the change)		
What will be the amino acid sequence?		
Will there likely be effects?		
What kind of mutation is this?		
Mutated DNA Sequence #4: T A C A C C T T G G	CGACTACT	
What's the mRNA sequence? (Circle the change)		
What will be the amino acid sequence?		
Will there likely be effects?		
What kind of mutation is this?		
Mutated DNA Sequence #5: T A C A C C T T G G C		
What will be the corresponding mRNA sequence?		
What will be the amino acid sequence?		
Will there likely be effects?		
What kind of mutation is this?		

Ms. DR's Biology 621

Na	me:Block: Date:	
1.	Which type of mutation is responsible for new variations (alleles) of a trait?	
2.	Which type of mutation results in abnormal amino acid sequence?	
3.	Which type of mutation stops the translation of the mRNA?	